Copied to
clipboard

G = C3×C327D8order 432 = 24·33

Direct product of C3 and C327D8

direct product, metabelian, supersoluble, monomial

Aliases: C3×C327D8, C3314D8, C12⋊S39C6, C12.32(S3×C6), (D4×C33)⋊2C2, (D4×C32)⋊7S3, (D4×C32)⋊8C6, C3210(C3×D8), C324C810C6, (C3×C12).127D6, (C32×C6).73D4, C3212(D4⋊S3), C6.35(C327D4), (C32×C12).27C22, D4⋊(C3×C3⋊S3), C33(C3×D4⋊S3), C4.1(C6×C3⋊S3), (C3×D4)⋊1(C3×S3), (C3×D4)⋊4(C3⋊S3), C12.52(C2×C3⋊S3), (C3×C6).69(C3×D4), (C3×C12⋊S3)⋊5C2, C6.38(C3×C3⋊D4), (C3×C12).46(C2×C6), (C3×C324C8)⋊8C2, C2.4(C3×C327D4), (C3×C6).108(C3⋊D4), SmallGroup(432,491)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C3×C327D8
C1C3C32C3×C6C3×C12C32×C12C3×C12⋊S3 — C3×C327D8
C32C3×C6C3×C12 — C3×C327D8
C1C6C12C3×D4

Generators and relations for C3×C327D8
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 676 in 196 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×D4, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, D4⋊S3, C3×D8, C3×C3⋊S3, C32×C6, C32×C6, C3×C3⋊C8, C324C8, C3×D12, C12⋊S3, D4×C32, D4×C32, D4×C32, C32×C12, C6×C3⋊S3, C3×C62, C3×D4⋊S3, C327D8, C3×C324C8, C3×C12⋊S3, D4×C33, C3×C327D8
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊S3, C3⋊D4, C3×D4, S3×C6, C2×C3⋊S3, D4⋊S3, C3×D8, C3×C3⋊S3, C3×C3⋊D4, C327D4, C6×C3⋊S3, C3×D4⋊S3, C327D8, C3×C327D4, C3×C327D8

Smallest permutation representation of C3×C327D8
On 72 points
Generators in S72
(1 22 34)(2 23 35)(3 24 36)(4 17 37)(5 18 38)(6 19 39)(7 20 40)(8 21 33)(9 46 51)(10 47 52)(11 48 53)(12 41 54)(13 42 55)(14 43 56)(15 44 49)(16 45 50)(25 61 66)(26 62 67)(27 63 68)(28 64 69)(29 57 70)(30 58 71)(31 59 72)(32 60 65)
(1 68 11)(2 12 69)(3 70 13)(4 14 71)(5 72 15)(6 16 65)(7 66 9)(8 10 67)(17 43 30)(18 31 44)(19 45 32)(20 25 46)(21 47 26)(22 27 48)(23 41 28)(24 29 42)(33 52 62)(34 63 53)(35 54 64)(36 57 55)(37 56 58)(38 59 49)(39 50 60)(40 61 51)
(1 34 22)(2 23 35)(3 36 24)(4 17 37)(5 38 18)(6 19 39)(7 40 20)(8 21 33)(9 51 46)(10 47 52)(11 53 48)(12 41 54)(13 55 42)(14 43 56)(15 49 44)(16 45 50)(25 66 61)(26 62 67)(27 68 63)(28 64 69)(29 70 57)(30 58 71)(31 72 59)(32 60 65)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 8)(2 7)(3 6)(4 5)(9 12)(10 11)(13 16)(14 15)(17 18)(19 24)(20 23)(21 22)(25 28)(26 27)(29 32)(30 31)(33 34)(35 40)(36 39)(37 38)(41 46)(42 45)(43 44)(47 48)(49 56)(50 55)(51 54)(52 53)(57 60)(58 59)(61 64)(62 63)(65 70)(66 69)(67 68)(71 72)

G:=sub<Sym(72)| (1,22,34)(2,23,35)(3,24,36)(4,17,37)(5,18,38)(6,19,39)(7,20,40)(8,21,33)(9,46,51)(10,47,52)(11,48,53)(12,41,54)(13,42,55)(14,43,56)(15,44,49)(16,45,50)(25,61,66)(26,62,67)(27,63,68)(28,64,69)(29,57,70)(30,58,71)(31,59,72)(32,60,65), (1,68,11)(2,12,69)(3,70,13)(4,14,71)(5,72,15)(6,16,65)(7,66,9)(8,10,67)(17,43,30)(18,31,44)(19,45,32)(20,25,46)(21,47,26)(22,27,48)(23,41,28)(24,29,42)(33,52,62)(34,63,53)(35,54,64)(36,57,55)(37,56,58)(38,59,49)(39,50,60)(40,61,51), (1,34,22)(2,23,35)(3,36,24)(4,17,37)(5,38,18)(6,19,39)(7,40,20)(8,21,33)(9,51,46)(10,47,52)(11,53,48)(12,41,54)(13,55,42)(14,43,56)(15,49,44)(16,45,50)(25,66,61)(26,62,67)(27,68,63)(28,64,69)(29,70,57)(30,58,71)(31,72,59)(32,60,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,18)(19,24)(20,23)(21,22)(25,28)(26,27)(29,32)(30,31)(33,34)(35,40)(36,39)(37,38)(41,46)(42,45)(43,44)(47,48)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72)>;

G:=Group( (1,22,34)(2,23,35)(3,24,36)(4,17,37)(5,18,38)(6,19,39)(7,20,40)(8,21,33)(9,46,51)(10,47,52)(11,48,53)(12,41,54)(13,42,55)(14,43,56)(15,44,49)(16,45,50)(25,61,66)(26,62,67)(27,63,68)(28,64,69)(29,57,70)(30,58,71)(31,59,72)(32,60,65), (1,68,11)(2,12,69)(3,70,13)(4,14,71)(5,72,15)(6,16,65)(7,66,9)(8,10,67)(17,43,30)(18,31,44)(19,45,32)(20,25,46)(21,47,26)(22,27,48)(23,41,28)(24,29,42)(33,52,62)(34,63,53)(35,54,64)(36,57,55)(37,56,58)(38,59,49)(39,50,60)(40,61,51), (1,34,22)(2,23,35)(3,36,24)(4,17,37)(5,38,18)(6,19,39)(7,40,20)(8,21,33)(9,51,46)(10,47,52)(11,53,48)(12,41,54)(13,55,42)(14,43,56)(15,49,44)(16,45,50)(25,66,61)(26,62,67)(27,68,63)(28,64,69)(29,70,57)(30,58,71)(31,72,59)(32,60,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,18)(19,24)(20,23)(21,22)(25,28)(26,27)(29,32)(30,31)(33,34)(35,40)(36,39)(37,38)(41,46)(42,45)(43,44)(47,48)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72) );

G=PermutationGroup([[(1,22,34),(2,23,35),(3,24,36),(4,17,37),(5,18,38),(6,19,39),(7,20,40),(8,21,33),(9,46,51),(10,47,52),(11,48,53),(12,41,54),(13,42,55),(14,43,56),(15,44,49),(16,45,50),(25,61,66),(26,62,67),(27,63,68),(28,64,69),(29,57,70),(30,58,71),(31,59,72),(32,60,65)], [(1,68,11),(2,12,69),(3,70,13),(4,14,71),(5,72,15),(6,16,65),(7,66,9),(8,10,67),(17,43,30),(18,31,44),(19,45,32),(20,25,46),(21,47,26),(22,27,48),(23,41,28),(24,29,42),(33,52,62),(34,63,53),(35,54,64),(36,57,55),(37,56,58),(38,59,49),(39,50,60),(40,61,51)], [(1,34,22),(2,23,35),(3,36,24),(4,17,37),(5,38,18),(6,19,39),(7,40,20),(8,21,33),(9,51,46),(10,47,52),(11,53,48),(12,41,54),(13,55,42),(14,43,56),(15,49,44),(16,45,50),(25,66,61),(26,62,67),(27,68,63),(28,64,69),(29,70,57),(30,58,71),(31,72,59),(32,60,65)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11),(13,16),(14,15),(17,18),(19,24),(20,23),(21,22),(25,28),(26,27),(29,32),(30,31),(33,34),(35,40),(36,39),(37,38),(41,46),(42,45),(43,44),(47,48),(49,56),(50,55),(51,54),(52,53),(57,60),(58,59),(61,64),(62,63),(65,70),(66,69),(67,68),(71,72)]])

81 conjugacy classes

class 1 2A2B2C3A3B3C···3N 4 6A6B6C···6N6O···6AN6AO6AP8A8B12A12B12C···12N24A24B24C24D
order1222333···34666···66···66688121212···1224242424
size11436112···22112···24···436361818224···418181818

81 irreducible representations

dim11111111222222222244
type+++++++++
imageC1C2C2C2C3C6C6C6S3D4D6D8C3×S3C3⋊D4C3×D4S3×C6C3×D8C3×C3⋊D4D4⋊S3C3×D4⋊S3
kernelC3×C327D8C3×C324C8C3×C12⋊S3D4×C33C327D8C324C8C12⋊S3D4×C32D4×C32C32×C6C3×C12C33C3×D4C3×C6C3×C6C12C32C6C32C3
# reps111122224142882841648

Matrix representation of C3×C327D8 in GL6(𝔽73)

6400000
0640000
0064000
0006400
000010
000001
,
010000
72720000
0064000
000800
000010
000001
,
100000
010000
008000
0006400
000010
000001
,
7660000
59660000
000100
0072000
0000048
00003841
,
7660000
59660000
000100
001000
0000048
0000350

G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,64,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,59,0,0,0,0,66,66,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,38,0,0,0,0,48,41],[7,59,0,0,0,0,66,66,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,35,0,0,0,0,48,0] >;

C3×C327D8 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_7D_8
% in TeX

G:=Group("C3xC3^2:7D8");
// GroupNames label

G:=SmallGroup(432,491);
// by ID

G=gap.SmallGroup(432,491);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,1011,514,80,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽